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ABSTRACT
We propose a neural network model to estimate word translation
probabilities for Cross-Lingual Information Retrieval (CLIR). The
model estimates better probabilities for word translations than au-
tomatic word alignments alone, and generalizes to unseen source-
target word pairs. We further improve the lexical neural translation
model (and subsequently CLIR), by incorporating source word con-
text, and by encoding the character sequences of input source words
to generate translations of out-of-vocabulary words. To be effective,
neural network models typically need training on large amounts
of data labeled directly on the final task, in this case relevance to
queries. In contrast, our approach only requires parallel data to
train the translation model, and uses an unsupervised model to
compute CLIR relevance scores.

We report results on the retrieval of text and speech documents
from three morphologically complex languages with limited train-
ing data resources (Swahili, Tagalog, and Somali) and short English
queries. Despite training on only about 2M words of parallel train-
ing data for each language, we obtain neural network translation
models that are very effective for this task. We also obtain further
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improvements using (i) a modified relevance model, which uses
the probability of occurrence of a translation of each query term
in the source document, and (ii) confusion networks (instead of
1-best output) that encode multiple transcription alternatives in the
output of an Automatic Speech Recognition (ASR) system.

We achieve overall MAP relative improvements of up to 24%
on Swahili, 50% on Tagalog, and 39% on Somali over the baseline
probabilistic model, and larger improvements over monolingual
retrieval from machine translation output.
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networks.
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1 INTRODUCTION
Cross-lingual Information Retrieval (CLIR) has the challenge of
contending with translation ambiguity, in addition to the general
challenges of information retrieval. Whether the documents are
translated to the query language or vice versa, it is important to
consider alternative translations during retrieval for good CLIR
performance [23], since alternatives provide more possibilities for
matching query words in relevant documents compared to using a
single translation. Using probabilities associated with the transla-
tions to compute retrieval scores is also beneficial, as these prob-
abilities serve as an indicator of the system’s confidence in the
translations. An effective yet relatively simple method for CLIR
is to use multiple translations of individual words, either of the
queries or the documents to compute a relevance score [33], where
the probabilistic word translations are usually generated from au-
tomatic word alignments of a parallel training corpus.

The coverage and quality of translations are a major factor in
the performance of the CLIR system. In this paper, we propose a
Neural Network Lexical Translation Model (NNLTM) to improve
the estimation of source word translations, which are then used in
CLIR. By virtue of mapping the input to continuous embeddings,
the neural network generalizes to source-target words not directly
observed in the parallel data alignments. We also condition the
translations on the context surrounding the source word, thus mak-
ing the translations context-dependent. The neural network can
model the large input space of context-dependent word translations
reliably, which would not be possible with a discrete model because
of data sparsity. We use the word translations estimated by the
NNLTM in the same unsupervised CLIR relevance model that uses
alignment-based translations. Our proposed method only requires
parallel training data to train the NNLTM, but no supervised rele-
vance data, which is significantly harder to obtain. By translating
the document rather than the query, the model takes advantage of
the sentence context. We describe how indexing and retrieval of
documents can still be done efficiently with the proposed model.

Estimating translations reliably is especially important when the
amount of bilingual training data is limited. We report experiments
on retrieval of Swahili, Tagalog and Somali text and speech docu-
ments against short English queries. We use queries and retrieval
corpora from the IARPA MATERIAL [3] (Machine Translation for
English Retrieval of Information in Any Language) program, and
limited training data: roughly 2M words of parallel text data for
each language, and between 48 and 128 hours of transcribed speech
to train the Automatic Speech Recognition (ASR) system. We report
large CLIR improvements on the three language. We further im-
prove the neural model by encoding the character sequences of the
source words using Convolutional Neural Networks (CNNs), thus
allowing the model to estimate translations for out-of-vocabulary
(OOV) source words, which are more common in low-resource and
morphologically complex languages like the ones we report about
in this work.

We compare probabilistic CLIR with monolingual retrieval per-
formed on translated documents and show that alignment-based
andNNLTM-basedmethods outperform retrieval onMachine Trans-
lation (MT) output, and also retrieval on human-produced reference
translations.

We also propose an improved retrieval model based on the prob-
ability that each query term occurs at least once in the source doc-
ument. This model is independent of the method in which the
translations are estimated. We also propose a method to improve
retrieval of speech documents.

To deal with speech recognition errors, which are especially
prevalent with limited ASR training data, we propose a method
for using multiple probabilistic outputs of the ASR system in the
form of consensus networks (c-nets), and show improvements over
using the 1-best output of ASR. We show further improvements
resulting from the integration of the c-nets with NNLTM.

To summarize, the contributions of this paper are:

• ANeural Network Lexical Translationmodel for Cross-Lingual
IR that uses source context and character-level encodings of
the input. To our best knowledge, this is the first work using
a neural lexical translation model for CLIR.

• An improved model for computing CLIR relevance based on
the probability of occurrence of each query word at least
once in the document.

• Improved retrieval of speech documents using a probabilistic
ASR output instead of 1-best.

• A comparison of probabilistic CLIR to monolingual IR based
on MT output and on human translations.

We achieve overall MAP relative improvements of up to 24%
on Swahili, 50% on Tagalog and 39% on Swahili over the baseline
probabilistic CLIR, and larger improvements over monolingual
retrieval from machine translation output.

Although we describe our work in terms of retrieval of non-
English documents based on English queries, the techniques we
propose are language independent, and can be readily applied to
any language pair.

2 PREVIOUS WORK
The approaches to CLIR that use a translation model can be divided
into two broad categories: [23]: (i) translate the queries to the lan-
guage of the retrieval corpus, or (ii) translate the retrieval corpus to
the same language as the queries. In both cases, the CLIR problem is
then reduced to monolingual information retrieval [22, 33]. Trans-
lation of the query is more efficient than translating the documents,
but translation of the document words can take advantage of the
larger context to disambiguate the translations.

An alternative approach is to directly model the CLIR problem
without a separate translation step. For example, [17] proposed
a cross-lingual relevance model to estimate the joint probability
of query words and document words from a parallel corpus or a
bilingual lexicon, and then they apply it to rank the documents. Al-
though this model has the advantage of not requiring that we train
a machine translation system on the parallel corpus, its drawback is
that the coverage is limited to only those query and document word
combinations found in the corpus. Sasaki et al. [28] designed a neu-
ral ranking model by adopting a ranking model from monolingual
information retrieval. It estimates the joint probability of a query
and document, and minimizes pairwise ranking loss. The limitation
of this model is that it is hard to take advantage of existing parallel
data for low resource languages, and the coverage is limited for
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various combinations of query and document words in the testing
data.

Other approaches rely heavily on training bilingual embeddings.
For example, Vulic et al. [32] trained bilingual embeddings on bilin-
gual comparable document data, used them to construct document
and query embeddings, and then ranked document relevance by
computing cosine similarity. Litschko et al.[20] proposed to train
bilingual embeddings using monolingual data. However, the ap-
proach to generate document and query embeddings is not done
in a way that directly maximizes performance on the end task of
CLIR relevance ranking. On the other hand, Bai et al. [4] devel-
oped a method for mapping documents and queries to a space that
optimizes ranking performance.

Neural approaches to monolingual IR have received a lot of inter-
est in recent years. [36] is a comprehensive review of neural IR. [7]
proposed to train neural ranking models with weak supervision by
using the output of a BM25 unsupervised ranking model. They rep-
resented the input document and query with weighted embeddings,
and tried several ranking architectures. Our approach is comple-
mentary; in principle any of the CLIR models we describe in this
paper can be used to generate the weak supervision labels, which
could then be used to train the ranking model. In practice, it is an
open question whether this approach would generalize effectively
to the cross-lingual setting.

The neural network we propose for estimating word translations
is similar to the model of [8], where they use the word translations
as a feature in a phrase-based MT system. The translation proba-
bilities in [8] are conditioned on the previous hypothesized target
words and the source context. In our work, we condition on the
source context only. The target context is not available since our
model only requires single word translation probabilities.

Information retrieval from speech has traditionally been referred
to as spoken document or spoken content retrieval. The standard
approach is to cascade the ASR output with a text retrieval system
[19].

For a recent overview of techniques in monolingual IR from
speech, see [16]. Similar approaches have been applied to CLIR.
Sheridan et al. [30] presented one of the first cross-lingual speech
retrieval systems, though results were far from monolingual sys-
tems. Performance quickly improved with the yearly evaluations
produced by the Cross-Language Evaluation Forum (CLEF) [9, 26].

In addition to the retrieval literature, work in keyword spotting
(KWS) and spoken term detection (STD) [10] can also be considered
a form of information retrieval. The IARPA Babel [1] program
further advanced the state-of-the-art in KWS. Improvements came
not only from general improvements in ASR systems [29] and
features [14], but also in search strategies [5] and normalization
[15]. Even when word error rate (WER) is high, KWS can still work
remarkably well [12]. A similar conclusion was noted in the IR
literature: that onceWER reaches a point of about 35%, performance
is not much worse than using reference transcripts [13].

3 CROSS-LINGUAL INFORMATION
RETRIEVAL

3.1 Probabilistic Cross-Lingual IR Model
Following [22] and [33], wemodel the IR problem using a generative
probabilistic model. We compute the probability that a document
Doc in the retrieval corpus is relevant (denoted by Doc is R) given
a user-issued query Q as:

P
(
Doc is R | Q

)
=

P
(
Q | Doc is R

)
× P

(
Doc is R

)
P(Q)

(1)

Ignoring P(Q), which is independent of the documents, and
assuming a uniform prior on document relevance, the relevance
probability is then proportional to the probability of the query being
"generated" from a relevant document (Eq 2a). This in turn is the
probability ofQ being generated from the document. Following [22],
we also include a component that corresponds to the probability of
the query being generated from a general language model in the
query language (Eq 2b).

P
(
Doc is R | Q

)
∝ P

(
Q | Doc is R

)
(2a)

=
∏
q∈Q

(
αP(q | Doc) +

(
1 − α

)
PLM (q)

)
(2b)

=
∏
q∈Q

(
α

∑
f ∈Doc

P(q | f )

| Doc |
+
(
1 − α

)
PLM (q)

)
(2c)

The cross-lingual component of the model, that is the probabil-
ity that the query is generated from the foreign document is the
probability that each query term q is the translation of any foreign
term f in the document (Eq 2c). This model requires a probabilistic
translation dictionary, which we estimate from a parallel training
corpus. In our baseline experiments, the translation dictionary is
generated from the word alignments. We later show that a dictio-
nary generated from a neural network lexical translation model
improves CLIR. The language model component (PLM (q)) is a back-
off model that avoids zero scores for query terms that are not in the
document. In our experiments we use a unigram language model
and a weight of 1-α = 0.1. The probability produced by equation
(2c) is used to rank the retrieval corpus documents with respect to
an input query.

Note that this formulation assumes that the words of a multi-
term query are independent. This assumption simplifies the model,
since as it allows us to use single word translations. It is useful
in the low-resource setting. The alternative would be to estimate
translation probabilities for the whole query phrases, but with
limited training data, the phrase translations and their probabilities
will be noisy.

A key advantage of this model is that it considers alternative
translations for the document words. As we show in the experi-
mental results, using alternative translations for IR results in better
performance than IR on a single translation of the documents,
whether the translation is automatic or performed by humans.

We chose to translate the document terms into English rather
than translate the query words to the foreign language; this allows
us to extend the model to using the sentence translations that
depend on the sentence context, as we describe in equation (4).
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The retrieval is still done efficiently, by indexing the documents
over the English terms that the document words can translate to.
For each English term and each document, we store the expected
count of that term in the document obtained by multiplying the
foreign term count with its probability of translating to the English
term. At retrieval time, to compute the probability of relevance for
a given query we look up the expected counts for its terms in the
index and combine them with the unigram LM probabilities.

3.2 Probability of Occurrence Model
The cross-lingual component of (2c) is the product of expected
counts of query terms with respect to the lexical translation proba-
bility distribution. The normalization of the translation probabilities∑
f ∈Doc P(q | f ) by the size of the document |Doc | has the effect of

penalizing longer documents compared to shorter ones. We propose
a model that mitigates this effect by computing the relevance score
as the probability that each query term occurs at least once in the
document. If T (Doc) is the set of valid translations of all words
and phrases in document Doc , the relevance score is computed as:

P
(
Doc is R | Q

)
= P

(
Q occurs at least once in T (Doc)

)
(3a)

=
∏
q∈Q

P
(
q occurs at least once in T (Doc)

)
(3b)

=
∏
q∈Q

[
1 − P

(
q < T (Doc)

) ]
(3c)

=
∏
q∈Q

[
1 −

∏
f ∈Doc

P
(
q < T

(
f
) ) ]

(3d)

=
∏
q∈Q

[
1 −

∏
f ∈Doc

(
1 − p

(
q | f

) ) ]
(3e)

In equation (3b), we make the same assumption of the model
of Section 3.1, which is that the query terms are independent of
each other. Retrieval can be done efficiently by pre-computing
the probability term of equation (3e) for each English term in the
translation dictionary and then indexing the corpus documents by
those terms ahead of time.

This model will still assign a higher score to documents that
have a higher expected count of the query terms, but does not pe-
nalize large documents proportionally to their length as the model
of Section 3.1 does. The goal is similar to lower-bounding TF nor-
malization in BM25+ [21] for example.

3.3 CLIR for Speech
The default procedure for performing CLIR on speech documents is
to transcribe the document using an Automatic Speech Recognition
(ASR) system, and then perform the retrieval on the 1-best output in
the same way that retrieval on text is done. The disadvantage of this
approach is that the retrieval is performed on the erroneous output
of the ASR system. The CLIR system has no way of recovering
from speech recognition errors. The effect of recognition errors is
especially severe in low resource settings, where the Word Error
Rate (WER) is high - on the order of 30% to 50%.

In fact, the ASR system produces multiple outputs with confi-
dence scores, which we propose to use for CLIR in order to mitigate

...

[mingi 1.0000]

[labda 0.9770]

[godda 0.0205]

[golda 0.0016]

[baada 0.0009]

... ...

[nafasi 0.5078]

[nafasi- 0.0847]

[naffasi 0.0155]

...

[NULL 0.3076]

Figure 1: Example consensus network for a Swahili utter-
ance.

the effect of ASR errors. We modify the relevance model of equation
3a by multiplying the term corresponding to each foreign word
f with the probability that f is recognized by ASR. Denoting the
latter by p

(
f | Doc

)
, the relevance equation becomes:

P
(
Doc is R | Q

)
=

∏
q∈Q

[
1−

∏
f ∈Doc

(
1−p

(
f | Doc

)
p
(
q | f

) ) ]
(4)

We compute p
(
f | Doc

)
from the consensus network (c-net) out-

put of the ASR system. A consensus network is obtained from a
speech lattice by aligning the lattice arcs to form a "sausage". Figure
1 shows an example of a consensus network network of a Swahili
utterance. Note that the ASR system might hypothesize that a cer-
tain slot in the network has no speech (the arc tagged NULL in the
example network). The CLIR system ignores this arc, and uses the
other alternatives.

We compute the probability of each unique term f in the c-net
of a foreign document Doc as the probability that f appears at any
location i in the document:

p
(
f | Doc

)
= p

(
f occurs at least in one position i in Doc

)
(5a)

= 1 −
∏

i ∈1... |Doc |

[
1 − p(f |i)

]
(5b)

p(f |i) is the probability that term f is produced in location i ob-
tained from the c-net.

Note that the terms p(f |Doc) can be pre-computed for the whole
corpus ahead of time, and therefore the terms in equation (5a)
can also be pre-computed for each English word in the translation
dictionary and used to index the documents for efficient retrieval.

4 NEURAL NETWORK MODEL FOR LEXICAL
TRANSLATIONS

The models of Sections 3.1 and 3.2 both rely on the word alignments
for the probabilistic lexical translations that they use to compute
the relevance scores. The translations suffer from two limitations:

(1) The translation probabilities are a context-independent prob-
abilistic dictionary: the same translation probability distri-
bution p

(
q | f

)
is used for a given foreign term f across the

whole corpus.
(2) The translations do not generalize to unseen word pairs:

Unless a source-target word pair (f ,q) occurs in a parallel
training sentence, and is aligned, its translation probability
will be zero.
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m 

Input character-level embedding 
representations of size L x d for input  
context window: kuangalia manufaa ya 

Convolutional layer with 
 multiple filter sizes (w) 

Max pooling and 
concatenation layer to 
obtain word-level 
features 

Fully 
connected 
layer 

useful 0.354 
benefits 0.251 
benefit 0.132 
beneficial 0.082 
    …. 

k 
u 
a 
n 
g 
a 
l 
i 
a 

y 

Softmax 
output 
layer 

w=2 
w=3 

Figure 2: Character level NNLTM architecture. Each word from the input context window is decomposed into characters, then
fed into a CNN and max-pooling layer to obtain word-level features, which are finally used for lexical translation.

The meaning of a word, and therefore its translations depend on
the sentence context in which it occurs. So one would expect the
use of context-dependent translation distributions to improve CLIR
accuracy. The second limitation is especially disadvantageous in
low training-resource settings, where many valid translation pairs
would typically not be observed, which then results in relevant
documents being missed by the CLIR model.

To address these limitations, we propose using a context-dependent
Neural Network Lexical Translation Model (NNLTM) in CLIR. The
model computes the probability of translation of a given source
word in its sentence context into the query word. The translation
probabilities are then used in the baseline CLIR model or the Prob-
ability of Occurrence model in the same way that alignment-based
translations are used. We then propose an variant of the NNLTM
that encodes the character sequences of source words instead of
whole words, to make the model more robust to morphological
and spelling variations, and make it generalize better to out-of-
vocabulary source word translations.

4.1 Word-Level NNLTM
Formally, given a source word fi and a context window of k words
on each side:

Ck (fi ) = fi−k , fi−k+1, ..., fi , ..., fi+k−1, fi+k (6)
the NNLTM estimates P

(
q | Ck (f )

)
, the context-dependent proba-

bility of translation of fi into every word q in the target language
vocabulary. The model is implemented as a feed-forward neural
network. Each of the 2k + 1 input words is mapped to a separate
d-dimensional embedding vector. The separate embeddings allow
the model to estimate separate parameters for each position in the
context window. We use one h-dimensional hidden layer with tanh
activation function. Additional hidden layers did not yield further
improvements in our experiments. We limit the source vocabulary
to the most frequent n words in the parallel training data, and map
other words to unknown. The output layer is a softmax over the

entire output vocabulary, which is the target vocabulary of training
data. The neural network is trained on samples extracted from par-
allel sentences. We align the corpus automatically using the same
procedure that generates the probabilistic dictionary of the baseline
models, then for each aligned source-target word pair (fi ,qj ) we
create a training sample (Ck (fi ),qj ).

Neural networks are used almost exclusively lately for modeling
a large context. Modeling context-dependent translations using
discrete probabilities would suffer from data sparsity as the training
data would not contain enough samples to estimate the probabilities
reliably. Another advantage of the neural network over the discrete
probabilities is that the neural network, by mapping the input to
an embedding space, can generalize to other words that might
have similar meanings as the aligned word pairs, even though they
were not observed in the parallel data. The discrete model would
assign a translation probability of zero to such pairs. Both of these
advantageous are especially important in low-resource settings.

4.2 Character-Level NNLTM
The word-level model generalizes to unseen source-target word
pairs, but it still cannot estimate translations for a source word
that is unseen in the training data. We generalize the model to
encode the character sequence of source words rather than embed
the whole source words. Encoding character representations of the
input rather that whole words has been shown to improve other
NLP tasks such as neural machine translation ([34], [18]). Modeling
the input as character sequences mitigates the problem of out-of-
vocabulary, which is especially severe for low-resource languages,
and also allows the model to be robust to morphological variations,
a challenge particularly for the languages we report on in this paper
since they all have a rich morphology.

Figure 2 shows a diagram of the character-level model. In this
case, we still use a word context window; we decompose each word
fj in Ck (f ) into a sequence of characters [x1, x2, ..., xl ]fj , and pad
the characters to a maximum length L. We then map this sequence
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to d-dimensional character embeddings:

Xfj = [д(x1),д(x2), ...,д(xL)]fj (7)

where д is the character embedding look up table: д ∈ IRd×|x | . The
resulting representation for fj is then a L×d dimension matrix Xfj .

We use a one-dimensional narrow convolution(CNN) filter H ∈

IRw×d of width w on each character embedding matrix Xfj (j =
i − k, i − k + 1, ..., i + k), and add a bias with ReLu non-linearity to
obtain a feature mapM fj ∈ IRL−w+1, such that the l-th element of
M fj is given by:

M fj [l] = ReLu(⟨Xfj [∗, l : l +w − 1],H ⟩ + b) (8)

where Xfj [∗, l : l +w − 1] is a slice of Xfj that contains all columns
between l and l +w − 1, and ⟨A,B⟩ = Tr(ABT ) is the sum of the
element-wise product of matricesA and B (Frobenius inner product).
Then we apply max-pooling on the feature to obtain yfj :

yfj =maxlM
fj [l] (9)

Form convolutional filters, we would obtain features for fj :

Yfj = y
1
fj
,y2fj , . . . ,y

m
fj

(10)

The character-level representation of the whole input Ck (f ) is:

F (Ck (f )) = Yfi−k ,Yfi−k+1 , . . . ,Yfi+k (11)

Similar to the word-level model, the input is then fed to an h-
dimensional hidden layer with tanh activation function.

In Section 5.6 we report significant CLIR improvements from the
NNLTM, and further improvements from Character-Level NNLTM.
In addition to allowing sentence context to be used, our choice of
translating words in the source documents as opposed to translat-
ing the query allows us to encode the character sequence of the
input on the source language side, but still decode English words.
Source-language input tends to be noisier (more spelling variations)
than the target since the former is naturally occurring, while the
latter is produced by translators. Also, the languages we deal with
have significantly more complex morphologies than English, and
therefore benefit more from character-level modeling.

4.3 Training and Decoding
For both models, we use Adam optimization to minimize the cross-
entropy loss of predictions between the output layer and reference
target translations. We apply dropout with probability pdropout on
all trainable parameters except for the input embeddings to reduce
over-fitting. The detailed experiment setup and results are given in
Section 5.6.

During decoding, we output the target words with K top prob-
abilities P

(
q | Ck (f )

)
. We still do efficient retrieval by decoding

each source word in the retrieval corpus and creating an index
from the target words to the documents, which we use to look up
the probabilities to compute the relevance score. The number of
decodings needed is at worst equal to the number of words in the
retrieval corpus. The decodings can be performed efficiently using
GPUs.

Lang Data Text Speech Queries #
Set

Swahili
Tune (547, 237k) (266, 236k) QTune 400
Test (449, 196k) (217, 77k) QTest1 300
TestL (10435, (4309, QTest1+2 900

4835k) 1445k)

Tagalog Tune (291, 169k) (315, 134k) QTune 400
Test (460, 232k) (244, 100k) QTest 300

Somali Tune (480, 218k) (279, 145k) QTune 400
Test (482, 157k) (213, 103k) QTest 300

Table 1: Retrieval data statistics. The number of documents
and the number of tokens (thousands) is shown for each re-
trieval corpus.

5 EXPERIMENTAL RESULTS
5.1 Query Sets and Retrieval Corpora
We next discuss the CLIR results. We report experimental results on
two conditions for each of the three languages: A Tune condition,
which we use to tune high-level parameters, such as interpolation
weights or context size, and a Test condition, that we evaluate
blindly. We use different query sets for the different conditions. For
Swahili, we also have available a larger corpus1 (TestL), on which we
present additional results. Note that the CLIRmodels themselves are
unsupervised, and we only use the relevance labels of the Tune sets
to estimate the high-level parameters. Table 1 shows the statistics of
the retrieval corpora. The average number of relevant documents
per query for the different retrieval conditions ranges between
0.09% and 0.25%.2

5.2 Data Resources
5.2.1 Parallel data. The same parallel training data was used to
train the MT systems and to estimate the probabilistic dictionaries
(for both the alignment-based dictionary and the neural lexical
translation models). The data consists mostly of parallel sentences
released under the MATERIAL and the LORELEI [2] programs.
We also include a parallel lexicon downloaded automatically from
Panlex (https://panlex.org/). Table 3 shows the amount of parallel
data (sentences and words) for each language.

5.2.2 Speech. The amount of transcribed speech used to train the
ASR system varies for each language: 68 hours for Swahili, 128
hours for Tagalog, and 48 hours for Somali. In addition to the MA-
TERIAL data, Swahili and Tagalog also include training data from
the IARPABabel program [1]. It should be noted that the transcribed
training data contains only conversational telephone speech, while
the evaluation corpora consists mostly of broadcast data.

1The corpus used for the official MATERIAL program evaluation
2Note that, in this paper, we have chosen to ignore two aspects of the MATERIAL
data collections, since they do not affect our conclusions about the relative differences
of the various models: (i) the “domain” constraints on the queries; and (ii) the fact
that some documents are spoken/written in a different (distractor) language. Taking
these aspects into account requires training separate models for topic and language
identification (which get combined with the CLIR models described in this paper); due
to lack of space, we cannot describe these models in sufficient detail here, but we plan
to do this in a future publication.
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MAP Tune/QTune Test/QTest1
Text Speech Text Speech

prob. occ. MT Ref
Transl. prob. occ. MT Ref

Transl. prob. occ. MT prob. occ. MT

Swahili 40.2 43.7 27.4 30.1 49.6 50.0 47.0 44.8 39.7 45.4 34.4 43.7 47.3 36.2
Tagalog 57.1 57.8 42.1 45.6 59.1 57.8 48.6 50.1 49.8 57.2 42.4 55.8 58.7 60.2
Somali 32.2 40.0 25.7 25.0 29.4 31.0 18.1 22.7 29.3 36.9 27.3 23.1 25.4 19.8

TestL/QTest1+2
Swahili — — — — — — — — 23.3 24.1 13.6 21.1 22.2 13.7

Table 2: MAP scores comparing between the probabilistic model (prob.) and the probability of occurrence model (occ.) , CLIR
fromMT1-best output (MT) andCLIR from reference translations. The first threemodels use 1-best ASR output. The reference
translations were done over the speech reference transcripts. The occurrence model achieves the best results overall.

Parallel
Data

Tune/QTune
Text

Lang Parallel
text

Parallel
lexicon OOV BLEU MAP

(sents, words) (words)
Swahili (72k, 1738k) 190k 4.99% 36.0 49.0
Tagalog (98k, 1950k) 65k 4.25% 43.0 63.9
Somali (98k, 2278k) 8k 13.7% 21.5 41.4

Table 3: Parallel training resources for each language. The
OOV rate, BLEU score of the MT output, and MAP score of
the probability of occurrence model are also shown for the
Tunes sets.

We report CLIR performance using Mean Average Precision
(MAP). Other metrics, such as gmap (Geometric Mean Average
Precision) and P@5 correlate very well with MAP. We don’t show
scores in other metrics for brevity, since those metrics don’t change
the conclusions we draw.

5.3 Comparison of Baseline and Probability of
Occurrence

We first compare the performance of the baseline Probabilistic
Model (Section 3.1) to that of the Probability of Occurrence Model
(Section 3.2). In both cases, we use a probabilistic lexical dictionary
obtained from automatic word alignments of the parallel training
data. We concatenate the output of two aligners: GIZA++ [24], and
the Berkeley Aligner [11], and then estimate the forward (target
given source) translation probabilities by normalizing the alignment
counts. Table 2 shows the MAP scores for both models. On the Test
set, the Probability of Occurrence model improves the scores for
text and speech documents for all data sets in the three languages.
We see a larger increase on text (5 to 7 points) than on speech (2-3
points). The text documents are on average longer than the speech
documents, and therefore they benefit more from the Probability
of Occurrence model since, unlike the baseline model, it does not
penalize longer documents by normalizing the expected count of
matched query words. We run CLIR on the 1-best ASR output for
all conditions. It is worth noting that the MAP scores for Swahili
TestLare significantly lower than those for the smaller Test set. The
TestLcorpus is much larger ( 15,000 docs. vs. 700 docs), which results

in a lower average precision over the queries. The Probability of
Occurrence model yields 1 MAP point gain on TestL.

5.4 Comparison of MT+IR vs. Probabilistic
CLIR

We next compare the results of both probabilistic CLIR models
to monolingual retrieval using the 1-best MT of the retrieval doc-
uments. We train a state-of-the-art Neural MT system using the
Transformer model [31], using the same parallel training data used
to train word alignments and estimate the translation probabilities
we used in the probabilistic CLIR models. We train a multi-lingual
model by combining the parallel data from the three languages,
then further fine-tune the model for each language separately using
the corresponding parallel data.

It is known that alternative translations are crucial for good CLIR
performance [23], since the alternative provide more possibilities
for matching query words in relevant documents than a single
translation. Table 2 shows thatMAP scores for both the probabilistic
baseline and the Probability of Occurrence models are significantly
higher than those corresponding to CLIR based on 1-best MT on
all languages and sets, expect for the speech subset of Tagalog Test.
We particularly note that the gain is up to 10 points on the more
challenging large Swahili test set (TestL).

One could argue that the CLIR from 1-best MT is at a disadvan-
tage in this comparison, and that a more fair comparison would
use the N-best MT output. Using N-best MT output has two disad-
vantages: (i) Producing N-best MT output (and 1-best output for
that matter) requires full sentence decoding, which is significantly
more complex and more computationally expensive than producing
probabilistic word translations, and (ii) It is not clear how transla-
tion probabilities can be obtained for the query terms from the MT
output; system scores for the overall hypotheses from the N-best
could be used, but those might not reflect the probabilities of the
specific query terms accurately.

Reference translations produced by professional translators are
available for the Tune sets, which allows us to make the compari-
son between the probabilistic CLIR methods and monolingual IR
independent of MT errors. The results in Table 2 show that the
probabilistic CLIR methods still perform significantly better than
monolingual IR on the reference translations, and that the latter
improve over MT-output IR only slightly (up to 3 MAP points). This
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Figure 3: MAP vs. WER on Swahili. Retrieval from ASR out-
put using nine different acoustic model and languagemodel
configurations are shown demonstrating the relationship
between WER and MAP.

is further indication of the importance of alternatives, since even
when the human translator translates a given query term correctly,
that particular translation might not match the query term.

5.5 CLIR for Speech
For ASR we use a speech processing platform [anonymous], which
integrates multiple machine learning toolkits, and uses Kaldi [27]
for acoustic model training. Our acoustic models are pre-trained on
1500 hours of data from 11 languages [anonymous] and then fine-
tuned to the target language. We use a CNN-LSTM acoustic model,
which is similar to the recently proposed TDNN-LSTM [6], but with
eight additional convolutional layers prepended to the network.
Performance is further improved through semi-supervised training.
After an initial decoding of the evaluation data, the acoustic model
is retrained with the hypothesized transcripts. During decoding we
use standard trigram language models.

Overall performance on spoken documents can be seen in Table
4. Due to recognition errors, the use of the one-best output from the
ASR system is inherently sub-optimal. In all cases we see a signifi-
cant performance improvement from using the consensus network
(c-net) output from the ASR system. For Swahili and Tagalog, while
the WER is relatively low, there is still a gap in performance com-
pared to the reference transcripts. Somali performs significantly
worse than the other two languages. This is likely caused by a
variety of issues including the reduced training data and inconsis-
tencies in orthography. While Somali does perform worse overall,
it is interesting to note that the ASR actually outperforms the ref-
erence transcripts. This could also be related to the orthography.
Since the ASR inherently produces spelling variants as alternatives,
this could partially alleviate the difficulties of translating words not
present in the machine translation model due to spelling variations.

Figure 3 more fully demonstrates the relationship between MAP
and WER on Swahili. The results are generated by mixing different

acoustic and language models. The models range from simple feed
forward acoustic models trained only on the Swahili training tran-
scripts, to our best system described above. Reducing WER below
40% required augmenting the language model and lexicon with
additional data collected from the web [35]. As the WER decreases,
we see a steady increase in MAP. In addition, the gap between the
ASR performance and the reference transcripts steadily decreases.
We also note that in all cases the consensus nets provide better
performance than the one-best transcript.

5.6 Neural Network Lexical Translation CLIR
Results

Next, we describe the CLIR results using the Neural Network Lexical
Translation Model (NNLTM). For all NNLTM-related experiments,
we use the NNLTM translation probabilities in the Occurrence
model of Section 3.2.

5.6.1 NNLTM Experimental Settings. Table 5 describes the archi-
tectures of the word-level and character-level NNLTMs. For the
character-level model, we limit the maximum word length L to be
30, and use convolutional widths of [1, 2, 3, 4, 5, 6, 7], and 500 filters
for each size.

We use the sameword alignments of the baselinemodels (GIZA++
[24], and Berkeley [11]) and extend the source word with its con-
text to extract the training samples. Both models are trained using
Adam for 20 epochs with a batch size of 512. We use a dropout
probability pdropout of 0.8 for the word-level model and 0.7 for
the character-level model. The learning rate is 0.001 for the word-
level model and 0.0005 for the character-level model. We use the 10
translations with the highest probabilities from NNLTM output in
CLIR.

5.6.2 Neural Lexical Translation Model Results. Table 6 shows the
MAP scores for the word-level and character-level NNLTMs for
the three languages. Occ. in the table corresponds to the baseline
using the alignment-based dictionary, NN(wd) is the word-level
NNLTM, and NN(ch) is the character-level NNLTM. We highlight
and compare the results of each model bellow:
(1) Word-level NNLTM vs. Baseline. On the Tune set, the Word-

level NNLTM improves over the alignment-based baseline across
all conditions. With the exception of Swahili Speech and Taga-
log Text, we see an improvement on the Test set. We note the
3 point improvement on the more challenging TestLset. The
results show that the translation probabilities produced by the
NNLTM result in better CLIR.

(2) Character-level vs.Word-levelNNLTM.The character-level
model improves even further on most conditions, showing the
benefit of the model’s ability to deal with OOVs and spelling
variations. For speech documents, we integrate the NNLTM
with the consensus network output of ASR (Section 3.3), by de-
coding the output of the consensus network with the NNLTM
and multiplying the two probabilities. The right-most column
of Table 6 shows further improvement on Swahili and Somali
Test sets.
Comparing the final condition to the alignment-based baseline,

we see an improvement on all sets and all languages ranging from
around 2 to 7 MAP points.
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Tune/QTune Test/QTest1 TestL/QTest1+2
ASR

Training WER MAP MAP MAP
1-best c-net transcr. 1-best c-net 1-best c-net

Swahili 68 hrs 28.4 50.0 52.5 56.2 47.3 51.7 22.2 25.0
Tagalog 128 hrs 29.1 57.8 61.5 69.4 58.7 66.4 — —
Somali 48 hrs 45.7 31.0 32.2 30.9 25.4 28.2 — —

Table 4: MAP results showing the gain from using ASR confusion networks instead of the 1-best transcription. For the Tune
set, MAP scores for running CLIR on the reference transcripts are shown. The number of speech hours used for training the
ASR system and the corresponding Word Error Rate (WER) are also shown for each language.

Word Level Character Level
Source vocab size 30,000 427
Target vocab size 54,042 54,042
Embedding size d 256 15
Hidden layer size h 128 256

Table 5: Word level and character level NNLTM architec-
tures.

5.6.3 Effect of NNLTM Context Size. To study how context size
affects word-level and character-level NNLTMs, we test different
context sizes for the Swahili Tune set. Table 7 shows theMAP scores
on the text and speech parts of the corpus. The optimal context size
is different for different conditions, but two points are worth noting.
The first is that context size greater than 0 performs better than
context 0 on all conditions, and the second is that the 0-context
model still perform better than the alignment-based baseline which
indicates that some of the benefits of the NNLTM come from the
generalization capability of the neural network and from encoding
the input character sequence.

5.7 Comparison between languages
The various techniques we have introduced in this paper show con-
sistent gains across the three languages. But we note that the range
of scores for Tagalog is significantly higher than that for Swahili,
which is in turn higher than Somali. We further investigate the dif-
ference between the languages by measuring the out of vocabulary
rate of the Tune set with respect to the parallel data, and the BLEU
[25] scores on the MT of the Tune sets in Table 3. Despite all three
languages having a comparable amount of training data, we see a
large difference in BLEU scores, correlating with the MAP scores,
and a difference in OOV rates. We verified that the difference in
OOV and BLEU is not due to the smaller size of the lexicon used
for Somali, by excluding the lexicons from the MT training data.
In a sense, Somali is more challenging that Swahili, which in turn
is more challenging than Tagalog. This observation is consistent
with anecdotal knowledge that Somali orthography is not strongly
standardized, and that it reflects dialectal variation, and with the
fact that Swahili is spoken across a much wider geographic area
than Tagalog.

6 CONCLUSIONS AND FUTUREWORK
In this paper we propose using a neural network lexical transla-
tion model for CLIR. We show that through the neural network’s

ability to generalize to unobserved source-target word pairs, by
using source context in the translation probability estimations, and
through encoding the character sequences of the words, the model
estimates better translation probabilities. Using these translation
probabilities in an unsupervised CLIR model we obtain significant
improvements over a baseline that uses the translation probabilities
estimated directly from word alignments, on a retrieval task from
three languages with limited training resources. We also propose an
improved CLIR model based on the probability of the query words
occurring at least once.

In the future, we plan to develop models that estimate the trans-
lation probabilities of multi-word queries directly, rather than treat
the query words independently. We also plan to pursue models
that detect the occurrence of the English query in a foreign sen-
tence directly, and drop reliance on word alignments, which are
usually noisy, especially when the amount of parallel training data
is limited.
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MAP Tune/QTune Test/QTest1
Text Speech Text Speech

occ. NN
(wd)

NN
(ch) occ. NN

(wd)
NN
(ch)

NN
(ch)

+c-net
occ. NN

(wd)
NN
(ch) occ. NN

(wd)
NN
(ch)

NN
(ch)

+c-net
Swahili 43.7 47.1 49.0 50.0 52.5 51.7 52.1 45.4 49.2 46.2 47.3 46.1 48.3 50.8
Tagalog 57.8 60.1 63.9 57.8 62.6 62.0 64.5 57.2 56.5 63.7 58.7 63.9 62.3 61.2
Somali 40.0 40.0 41.4 31.0 31.9 32.5 32.6 36.9 38.6 40.8 25.4 28.1 29.0 29.6

TestL/QTest1+2
Swahili — — — — — — — 23.3 26.3 26.4 21.1 24.5 24.6 26.1

Table 6: CLIR results comparing the Probability of Occurrence model using alignment-derived translations (occ.) to the same
model using the Word-Level NNLTM (NN(wd)) and the Character-level NNLTM (NN(ch)). NN(ch)+c-net shows results of inte-
grating the Character-Level NNLTM with ASR consensus networks.

Word-level
NNLTM

Character-level
NNLTM

MAP Text Speech Text Speech

Occ. (baseline) 43.7 48.6 43.7 48.6
Context=0 46.3 51.6 47.4 49.5
Context=1 47.1 52.5 47.9 55.0
Context=2 46.6 53.0 49.0 51.7
Context=3 47.0 53.9 47.4 53.4

Table 7: MAP scores for Swahili NNLTMs with different con-
text sizes on Tune/QTune.
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